Blocker Game
with Arduino Uno

Final Project for Microcontroller and

Applications

Gurleen Kour
HOCHSCHULE BREMEN

Blocker Game with Arduino Uno Gurleen Kour

SNOIT SUMIMIAIY .ttt e e e st e e e e s b e e e s sabbeee s s sbaeeessnbeeeseasaeeessnsseens 2
PROTOS Of the PrOJECT....iii it s e e e e bae e e s sabaaee s s s saeeenas 2
HAMWATE ...ttt e et e e sab e e eab e e e s bt e e s b e e s e abe e st e e s ebeeesanaeens 3
ESSENTIAIS ettt e e sttt e e e s 3
(0] o1 d o]0 F-1 PP OPTPPROE 4
Target SPECITICATION ...vviiiieeiee e e s e e s st ae e s s sba e e e e s abe e e e eaaaaeeeen 4
F N TY=] 021 o] SO PP PPRROTPPPPRNt 5
SOTEWAIE ettt ettt e h e et e s et e e b b e e e bt e e e b e e e e be e e ehbe e e bt e e nbeeennes 6
The diSPlay AriVEISeeiiiiieiee et e s st e e e e sbbeae e s sbaaeeessbaeeesnnnreeas 6
RESOUICES ...ttt e e et e e e s s s e e et e e e e e s s rnreas 6
The Arduino SKETCN.....coiiiiiie e e s 7
Variables DefiniTioNSuiiiiiiiiie e e 7

K1 <3 (U]« TP P PP OPPPPPPPPPPPPPPPPPPRt 7
0o T 1 7
(CT=10 0 (= Ko =4 TR PP PP PPPPRPP 7

GU L ettt ettt eh et bt e et e e he e s be bt e a et e bt e ehbeeeheeeteeaheesateenneeennn 8

T o T T Yo Yo 1110 V-SSR 8
KLU« TP PPPPPPPPPPPPRE 8

) =3 1] o T PSSO U PSPPI 8

The CH4 SOUICE FIlES .t 20
PrOBIEIMS. ..t nr e s ne e 24
POSSIDIE TESE CASE ..eeuiieeiiieitee ittt ettt ettt e s s e e e ean e e sreeenreesaneenneens 24

Blocker Game with Arduino Uno Gurleen Kour

SHORT SUMMARY

This Breakout game has 16 levels with different wall patterns of bricks. The wall patterns for
each level can have up to eight rows, with each two rows a different colour and a different
point gain per brick hit. The player bounces the ball on the paddle by moving the paddle with
the buttons (button mode) or by pressing the right or left side of the screen (touch mode).
By pressing the home button, the game is reset, and the home screen appears.

The objective of the game is to knock down as many bricks as possible by using the walls
and/or the paddle below to ricochet the ball against the bricks and eliminate them. If the
player's paddle misses the ball's rebound, they will lose a life. If all lives are lost, the game is

lost.
Row Points gained per brick hit
First 2 rows 1
3rd and 4th row 3
5th and 6th row 5
Last 2 rows 7

PHOTOS OF THE PROJECT

Home screen

EEEﬁﬁDUT

putton Hode

ode

Tou ch "

Blocker Game with Arduino Uno Gurleen Kour

First Level

My assistant (he tried to chew the jumper cables)

HARDWARE

ESSENTIALS

Arduino Mega 2560 Board

2,8" TFT Touchscreen Display compatible with Arduino Mega 2560, 240x320 pixel resolution

Blocker Game with Arduino Uno
3 buttons (right, left and home)

OPTIONAL

Optional materials will be required for Nice-To-Have Features.

Loudspeaker
External battery box

Case (to be 3D printed)

TARGET SPECIFICATION

Gurleen Kour

Feature

There are at least three levels.

Each level has a unique wall
pattern which can have up to
eight rows and eight columns.

Each two rows of bricks in
every wall pattern have a
different colour. The colours
are the same for every level of
the game.

For every brick destroyed the
player gains a number of
points which depends on the
brick’s colour. The colour-
points gained pairings are the
same for every level.

The paddle will be moved with
two buttons: one will move
the paddle forward, and one
will move the paddle
backward.

The paddle will also be able to
be controlled by touch. A
touch on the right side of the
screen will move the paddle
forward, and a touch on the
left side of the screen will
move the paddle backwards.

The paddle size and ball size
vary by level.

Priority
Must

Must

Must

Must

Must

Nice to have

Nice to have

Status
v

v

Blocker Game with Arduino Uno Gurleen Kour

There are lives. If the player's ~ Must v
paddle misses the ball's
rebound, they will lose a life.

If all lives are lost, the player Must v
loses the game.

When all bricks of a level are Must v
destroyed, the level is

completed.

When a level is completed, the Must v

next level appears on the
display and is playable.

If all levels are completed, the Must v
player wins the game.

A “Game lost” screen appears Must v
on the display when the game
is lost.

A “Game won” screen appears Must v
on the display when the game
is won.

The total ball speed increases Nice to have X
each time it hits a brick.

Console will function with Nice to have X
external battery.

A loudspeaker will be builtin Nice to have X
to play music while playing.

Console will be contained ina Nice to have X
plastic 3D printed case.

ASSEMBLY

The shield is assembled on the board with the below described connections.

Pin correspondence between LCD and Arduino

Blocker Game with Arduino Uno Gurleen Kour

LCD Pins Arduino UNO&2560 Pins |instruction
LCD_RST A4 Reset Signal
LCD_CS A3 Chip Sellect
LCD_RS A2 Command/Data Sellect
LCD_WR Al Write Signal
LCD_RD A0 Read Signal
GND GND Power GND
5V 5V Power VCC
3Vv3 3.3V/NC No Connected
LCD_DO 8 LCD Data BitO
LCD_D1 9 LCD Data Bitl
LCD_D2 2 LCD Data Bit2
LCD_D3 3 LCD Data Bit3
LCD_D4 4 LCD Data Bit4
- ! > LCD_D5 5, LCD Data Bit5
~N c SD. v LCD_D6 6 LCD Data Bit6
o i LCD_D7 7 LCD Data Bit7
= | SD_SS 10 SD-card Chip Sellect signal
- n SD_DI 11 SD-card SPI Bus MOSI Signal
'r-\ SD_DO 12 SD-card SPI Bus MISO Signal
- 8 SD_SCK i3 SD-card SPI Bus SCLK Signal
R =
| 2
o
Buttons connections with Arduino
Buttons Left Button Home Button Right Button
Pins 22 23 24

SOFTWARE

THE DISPLAY DRIVERS

ELEGOO, the manufacturer of the display used, delivered some excellent drivers for the
display available which are based off the Adafruit ILI9341 library. Initially | tried to use the
Adafruit drivers and adapt them for my own display because they have more functions,
which | thought could be helpful. | couldn’t adapt them though, so in the end | decided to
use the ELEGOO drivers.

RESOURCES

| used some code | found online, which can be described as “spaghetti code”, that is, very
difficult to understand and extend.

From it | took:

e Some of the data structures

e Most game attributes for each level, corresponding to the data structure
LevelConstants
(l.e. ball_size, player_width, gamefield_top, rows, columns, brick_gap, lives, wall[8] —
wall pattern)

e The colours and general graphic style

Blocker Game with Arduino Uno Gurleen Kour

The code taken over was heavily refactored to increase code readability and improved (for
example unnecessary variables were removed, methods were optimized according to clean
code techniques, and many bugs were detected and removed). The game logic was entirely
written by me.

These statements can easily be confirmed by looking at the source code online (see sources).

THE ARDUINO SKETCH

The Arduino Sketch is divided into the following sections:

VARIABLES DEFINITIONS

Here the variables and objects necessary for the game are defined. Constant variables are in
a separate .cpp file.

SETUP

In the setup() method, game objects are initialized and the newGame() method is called.

LOOP

In the loop, first is the user input evaluated, then the positions of all game objects updated.
After that, the level completion is evaluated by checking if all bricks were removed, in which
case the game will progress to the next level. Last but not least, the number of remaining
lives is checked. If it is zero, the game will display a “You Lost” message and return to the
home screen.

GAME LOGIC

This section contains the following methods:

newGame()

- updatelLives()

- updateBallPosition()

- updatePlayerPosition()

- checkBallCollisions() and its helper methods checkBrickCollision(),
checkCornerCollision(), checkBorderCollision(), checkPaddleCollision()

- ballHitsBottom() and its helper method resetBall()

- noBricks()

newGame()
This method sets up the home screen, where the player chooses between two game modes:

- Button Mode: player moves the paddle with buttons
- Touch Mode: player moves the paddle by touching the right or left side of the screen

Blocker Game with Arduino Uno Gurleen Kour

After the player makes a choice, the first level is painted on the screen.

GUI

This section contains methods to paint the game objects on the screen:

- drawText()

- clearDialog()

- touchToStart()

- showGameOver()

- showGameWon()

- updateScore()

- setupWall() and its helper methods isBrickIn(), setBrick() unsetBrick()
- drawBrick()

- hitBrick() and its helper method removeBrick()
- drawPlayer()

- removeOldPlayer()

- drawBall()

- removeOldBall()

- cleanGamefieldBottom()

INPUT HANDLING

Contains the method readTouch, which handles the input generated from the touchscreen.

SETUP

Contains two methods, initTft(), which adjusts the display’s settings, and setupState(), which
initializes the variable game_state.

game_State contains the information on the current status of the game.

SKETCH

This Sketch uses display drivers provided by ELEGOO and the library InputDebounce. The
software is not finalized. There are a couple of bugs which will be solved until the
presentation.

#include <InputDebounce.h>
#include "Elegoo_GFX.h"
#include "Elegoo TFTLCD.h"
#include "TouchScreen.h"
#include "colours.h"

Blocker Game with Arduino Uno Gurleen Kour

#include "data_containers.h"
#include "pin_definitions.h"
#include "game_constants.cpp"

InputDebounce button_left;
button_left on;

InputDebounce button_home;
button_home _on;

InputDebounce button_right;
button_right_on;

now;

Elegoo TFTLCD tft(LCD_CS, LCD CD, LCD_WR, LCD_RD, LCD_RESET);
TouchScreen touchscreen = TouchScreen(XP, YP, XM, YM, 300);
TFT _Size tft_size;
LevelConstants* current_level constants;
game_state_type game_state;

level;
millisLastBallMove = 0;
millisMoveBall = 20;

setup() {

Serial.begin(9600);

initTft(tft);

tft size = {0, 0, tft.width(), tft.height()};

current_level constants = &all levels constants[0];

button_ left.setup(BUTTON_LEFT, BUTTON_DEBOUNCE_DELAY,
InputDebounce: :PIM_INT PULL_UP_RES);

button_home.setup(BUTTON_HOME, BUTTON_DEBOUNCE_DELAY,
InputDebounce: :PIM_INT PULL_UP_RES);

button_right.setup(BUTTON_RIGHT, BUTTON_DEBOUNCE_DELAY,
InputDebounce: :PIM INT PULL UP_RES);

newGame(current_level constants, &game_state, tft);

}

Loop() A

if(game_state.game mode == 1){

button_left on = button_ left.process(now);

button_home_on button_home.process(now);
button_right on = button right.process(now);

if(button_home on) {

Blocker Game with Arduino Uno Gurleen Kour

game_state.score = 9;

level = 0;

newGame (current_level constants, &game state, tft);
else if (button_left on){

updatePlayerPosition(-1, &game state);

else if (button_right on){

updatePlayerPosition(1, &game_state);

if(game_state.game_mode == 2){
X_screen;
y_screen;
screen_touched = readTouch(current_level constants, &game_state,
&x_screen, &y_screen);

if(screen_touched){
if(x_screen > tft.width() / 2){
updatePlayerPosition(-1, &game_state);
} else {
updatePlayerPosition(1l, &game_state);

drawPlayer(current level constants, &game state);
removeOldPlayer(current_level constants, &game_state);

updateBallPosition(&game_state);
checkBallCollisions(current_level constants, &game state, game state.x ball,
game_state.y ball);

removeOldBall(game_state.x ball, game state.y ball, game state.x ball old,
game_state.y ball old, current_level constants->ball size);
drawBall(game state.x ball, game state.y ball,
current_level constants->ball size);

if (noBricks(current_level constants, &game_state) && level < LEVELS_NUMBER)

level++;

newGame(&all levels constants[level], &game state, tft);
} else if (game_state.lives left <= 0) {

showGameOver(current_level constants, &game state);

game_state.score = 9;

Blocker Game with Arduino Uno Gurleen Kour

level = 0;
delay(1000);
newGame(current_level constants, &game state, tft);
¥
}

newGame (LevelConstants* newGame, game state type
game_state, Elegoo TFTLCD &tft) {
current_level constants = newGame;
setupState(current_level constants, game state, tft);

touchToStart(current_level constants, game_state);

clearDialog(tft size);

updatelLives(current level constants->lives, game state->lives left);
updateScore(game_state->score);

setupWall(current_level constants, game_ state);

updateLives(lives, lives left) {
for (i=0; i< lives; i++) {
tft.fillCircle((2 + i) * 15, 15, 5, BLACK);
}
for (i=0; i< lives left; i++) {

tft.fillCircle((1 + i) * 15, 15, 5, YELLOW);
}

updateBallPosition(game state type* game state){

if((millis() - millisLastBallMove) >= millisMoveBall){
game_state->x_ball += game_state->ball speed x;
game_state->y ball += game_state->ball speed y;
millisLastBallMove = millis();

updatePlayerPosition(direction, game_state type* game_ state) {

if (direction < 9) {
game_state->x_player -= 10;
} else {
game_state->x player += 10;

Blocker Game with Arduino Uno Gurleen Kour

if (game_state->x_player >= tft.width() - current level constants-
>player_width)
game_state->x player = tft.width() - current_level constants-
>player width;
if (game_state->x_player < 0)
game_state->x_player = 0;

checkBrickCollision(LevelConstants* current level constants,
game_state_type* game_state, x_ball, y ball) {
= x_ball + current_level constants->ball_size;

yl = y ball + current_level constants->ball size;

collisions = 0;

collisions += checkCornerCollision(current_level constants, game_state,
x_ball, y ball);

collisions += checkCornerCollision(current_level constants, game_state,
y1);

collisions += checkCornerCollision(current_level constants, game_state,
x_ball, yl1);

collisions += checkCornerCollision(current_level constants, game_state,
y_ball);

if (collisions > @) {
game_state->ball speed y = (-1 * game_state->ball speed y);

if ((((x_ball % game_state->brick width) == @) && (game_state-
>ball speed x < 0))
|| (((x1 % game_state->brick width) == @) && (game_state-
>ball speed x > 0))) {
game_state->ball speed x = (-1 * game_state->ball speed x);

checkCornerCollision(LevelConstants
current_level constants, game_state_ type* game_state, x_ball,
y ball) {
if ((y_ball > game_state->wall top) && (y_ball < game_state->wall bottom))

{

row = (y_ball - game state->wall top) / game_state->brick height;
column = (x_ball / game_state->brick _width);

Blocker Game with Arduino Uno Gurleen Kour

if (isBrickIn(game_state->wallState, column, row)) {
hitBrick(game_state, column, row);
return true;
}
}

return false;

}

checkBorderCollision(LevelConstants
current_level constants, game_state_ type* game_state, Xx_ball,
y ball) {

if (x_ball + current_level constants->ball size >= tft.width())

{
game_state->ball speed x -abs(game_state->ball speed x);
}
if (x_ball <= 9)
{

game_state->ball speed x = abs(game_state->ball speed x);

}
if (y_ball <= SCORE_SIZE)

{

game_state->ball speed_y = -abs(game_state->ball speed y);
}
if((y_ball + current_level constants->ball size) »>= game_state-
>gamefield bottom){
ballHitsBottom(current_level constants, game_state);

}
}

checkPaddleCollision(LevelConstants* current level constants,
game_state_ type* game_state, x_ball, y ball){

if((y_ball + current_level constants->ball size) <= (game_state-
>gamefield bottom - player height)

|| (y_ball + current_level constants->ball size) >= game_state-
>gamefield bottom

|| (x_ball + current_level constants->ball size) <= game_state->x_player

|| x ball >= (game_ state->x_player + current_level constants-
>player_width)){

return;

}

game_state->ball speed y = -abs(game_state->ball speed y);

Blocker Game with Arduino Uno Gurleen Kour

checkBallCollisions(LevelConstants* current level constants,

game_state_type* game_state, x_ball, y ball) {
checkBrickCollision(current level constants, game state, x ball, y ball);
checkBorderCollision(current level constants, game state, x ball, y ball);
checkPaddleCollision(current_level constants, game state, x ball, y ball);

}

ballHitsBottom(LevelConstants* current_level constants, game_state_ type
game_state) {
game_state->lives left--;
updatelLives(current level constants->lives, game state->lives left);
delay(500);
resetBall(current_level constants, game state);
cleanGamefieldBottom(current level constants);

boolean noBricks(LevelConstants* current level constants, game state type
game_state) {
for (row = @; row < current_level constants->rows ; row++) {
if (game_state->wallState[row])
return false;

}

return true;

resetBall(LevelConstants* current_level constants, game state type
game_state){

game_state->x ball old = game state->x_ball;

game_state->x_ball = 50;

game_state->y ball old = game state->y ball;

game_state->y ball = 200;

game_state->ball speed x = initial ball speed_x;
game_state->ball speed y = initial ball speed y;

drawText (string,
fontsize,
colour) {
.setTextSize(fontsize);
.setCursor(x, y);
.setTextColor(colour);
.print(string);

clearDialog(TFT_Size tft size) {

Blocker Game with Arduino Uno Gurleen Kour

tft.fillRect(tft_size.x, tft_size.y, tft_size.width,
tft size.height, BLACK);

tft.fillRect(tft_size.x, tft _size.y, tft_size.width, SCORE_SIZE,
PRIMARY_DARK_COLOR);

}

touchToStart(LevelConstants® current_level constants, game_state_ type
game_state) {

clearDialog(tft size);
updatelLives(current level constants->lives, game state->lives left);
updateScore(game_state->score);

drawText(o, 100, " BREAKOUT", 3, YELLOW);
drawText(e, 140, " Choose Mode:", 2, RED);
tft.fillRect(0, 170, tft.width(), 40, GREEN);
drawText (o, 180, " Button Mode", 2, WHITE);
tft.fillRect(0, 210, tft.width(), 40, BLUE);
drawText(@, 220, " Touch Mode", 2, WHITE);

X_screen;
y_screen;
while (!readTouch(current_level constants, game_ state, &x_screen,

&y screen)) {}

if(y_screen > 170 & y screen < 210){
game_state->game_mode = 1;
} else if(y_screen > 210 && y screen < 250){
game_state->game_mode = 2;
}
}

showGameOver(LevelConstants* current level constants, game_ state type
game_state) {
tft.fillScreen(BLACK);
drawText(30, 30, "GAME OVER", 3, YELLOW);
drawText (40, 60, "YOU LOST", 3, YELLOW);

}

showGamelWon(LevelConstants* current_level constants, game_state type
game_state) {
tft.fillScreen(BLACK);
drawText(30, 30, "WELL DONE!", 3, YELLOW);
drawText (40, 60, "YOU WON", 3, YELLOW);

}

updateScore(score) {

Blocker Game with Arduino Uno Gurleen Kour

buffer[5];
snprintf(buffer, sizeof(buffer), scoreFormat, score);
tft.fillRect(tft.width() - 50, ©, 100, SCORE_SIZE, PRIMARY_DARK_COLOR);
drawText(tft.width() - 50, 6, buffer, 2, YELLOW);

}

setupWall(LevelConstants* current_level constants, game_state_ type
game_state) {

colors[] = {RED, RED, BLUE, BLUE, YELLOW, YELLOW, GREEN, GREEN};
game_state->wall top = current_level constants->gamefield top + 490;

game_state->wall bottom = game_state->wall top + current_level constants-
>rows * game_state->brick_height;

for (row = ©; row < current_ level constants->rows; row++) {
for (column = @; column < current level constants->columns; column++)

if (isBrickIn(current_level constants->wall, column, row)) {
setBrick(game_state->wallState, column, row);
drawBrick(game_state, column, row, colors[row]);

boolean isBrickIn(wall[], column,
return wall[row] & BIT_MASK[column];

}

setBrick(wall[], column,
wall[row] = wall[row] | BIT_MASK[column];

}

unsetBrick(wall[], column,
wall[row] = wall[row] & ~BIT MASK[column];

}

drawBrick(game_state_type* game_state, xBrick, yBrickRow,
colour) {
X = (game_state->brick_width * xBrick) + current_level constants-
>brick _gap;
y = game_state->wall top + (game_state->brick_height * yBrickRow) +
current_level constants->brick_gap;
width = game_state->brick width - current_level constants->brick _gap
height = game_ state->brick _height - current_level constants-
>brick _gap * 2;
tft.fillRect(x, y, width, height, colour);
}

Blocker Game with Arduino Uno Gurleen Kour

removeBrick(game_state type* game_state, xBrick, yBrickRow) {
x = (game_state->brick width * xBrick);
y = game_state->wall top + (game_state->brick_height * yBrickRow);
width = game_state->brick width;
height = game_state->brick_height;
tft.fillRect(x, y, width, height, BLACK);

hitBrick(game_state_ type* game_ state, xBrick, yBrickRow) {
game_state->score += pointsForRow[yBrickRow];
drawBrick(game_state, xBrick, yBrickRow, WHITE);
delay(16);
drawBrick(game_state, xBrick, yBrickRow, BLUE);
delay(8);
removeBrick(game_state, xBrick, yBrickRow);
unsetBrick(game state->wallState, xBrick, yBrickRow);
updateScore(game_state->score);

drawPlayer(LevelConstants® current_level constants, game_state_ type
game_state) {
X = game_state->x_player;
y = game_state->gamefield bottom - player_height;
width = current_level constants->player width;
height = player height;
tft.fillRect(x, y, width, height, YELLOW);
}

removeOldPlayer(LevelConstants* current level constants, game state type
game_state) {
if (game_state->x_player != game state->x_player old) {
x = game_state->x_player;
y = game_state->gamefield bottom - player_ height;
width = abs(game_state->x _player - game state->x_player old);
height = player_height;

if (game_state->x_player < game_state->x_player_old) {
X = game_state->x_player + current_level constants->player width;
} else {

X = game_state->x_player old;

}

tft.fillRect(x, y, width, height, BLACK);

game_state->x_player_old = game_state->x_player;

}

Blocker Game with Arduino Uno Gurleen Kour

drawBall(X, Y, ball size) {
tft.fillRect(x , y, ball size, ball size, YELLOW);

}

removeOldBall(X, Y, xold, yold, ball size){
if (xold <= x && yold <= y) {

tft.fillRect(xold , yold, ball size, y - yold, BLACK);
tft.fillRect(xold , yold, x - xold, ball size, BLACK);

else if (xold >= x && yold >= y) {

tft.fillRect(x + ball size , yold, xold - x, ball size, BLACK);
tft.fillRect(xold , y + ball size, ball size, yold - y, BLACK);
else if (xold <= x && yold >= y) {

tft.fillRect(xold , yold, x - xold, ball size, BLACK);
tft.fillRect(xold , y + ball size, ball size, yold - y, BLACK);
else if (xold >= x && yold <= vy) {

tft.fillRect(xold , yold, ball size, y - yold, BLACK);
tft.fillRect(x + ball size, yold, xold - x, ball size, BLACK);

game_state.x_ball old game_state.x_ball;
game_state.y ball old = game state.y ball;

}

cleanGamefieldBottom(LevelConstants* current level constants){

X 9;

y = tft.height() - current_level constants->ball size + 5;

width = tft.width();

height = current_level constants->ball size + 5;
tft.fillRect(x, y, width, height,BLACK);

}

readTouch(LevelConstants* current_level constants, game state type
game_state, X_screen, y_screen) {
TSPoint tp = touchscreen.getPoint();

pinMode (XM, OUTPUT);
pinMode(YP, OUTPUT);

if (tp.z > MINPRESSURE && tp.z < MAXPRESSURE) {

Blocker Game with Arduino Uno Gurleen Kour

*x_screen = map(tp.x, TOUCHSCREEN RIGHT, TOUCHSCREEN LEFT, @,
tft.width());

*y screen = map(tp.y, TOUCHSCREEN TOP, TOUCHSCREEN_BOTTOM, 320, 0);

return true;

}

return false;

initTft(Elegoo TFTLCD& tft) {
Serial.begin(9609);

tft.reset();

identifier = tft.readID();
if (identifier == 0x0101)
{
identifier = 0x9341;
Serial.println(F("Found ©0x9341 LCD driver"));
¥
else if (identifier == Ox1111)
{
identifier = 0x9328;
Serial.println(F("Found 0x9328 LCD driver"));
¥
else {
Serial.print(F("Unknown LCD driver chip: "));
Serial.println(identifier, HEX);
identifier = 0x9328;

}
tft.begin(identifier);
tft.setRotation(0);

setupState(LevelConstants* current_level constants, game_state type
game_state, Elegoo TFTLCD& tft) {
game_state->gamefield bottom = tft.height();
game_state->brick _width = tft.width() / current_level constants-
>columns;
game_state->brick height = tft.height() / 24;

for (row = ©; row < current_level constants->rows; row++) {
game state->wallState[row] = 0;

Blocker Game with Arduino Uno Gurleen Kour

game_state->x player = tft.width() / 2 - current_level constants-
>player_width / 2;

game_state->lives left = current_level constants->lives;

game_state->x_ball = 50;

game_state->x_ball old = 50;

game_state->y ball = 200;

game_state->y ball old = 200;
game_state->ball speed x = initial ball speed_x;
game_state->ball speed y = initial ball speed y;

THE C++ SOURCE FILES
pin_definition.cpp

DEFINITIONS
DEFINITIONS

BUTTON_LEFT 22
BUTTON_HOME 23
BUTTON_RIGHT 24

LCD_CS A3
LCD_CD A2
LCD_WR Al
LCD_RD A
LCD_RESET A4

LOWFLASH (defined(__AVR_ATmega328P_) && defined(MCUFRIEND KBV _H_))

colours.h

Blocker Game with Arduino Uno Gurleen Kour

COLOURS
COLOURS

BLACK 0x0000
BLUE Ox001F
RED OxF800
GREEN Ox07E0
CYAN OxO7FF

MAGENTA OxF81F

YELLOW O©xFFE@Q

WHITE OXFFFF
PRIMARY_COLOR ©x4A11
PRIMARY_LIGHT_COLOR ©x7A17
PRIMARY_DARK_COLOR 0x4016
PRIMARY_TEXT_COLOR Ox7FFF

Blocker Game with Arduino Uno Gurleen Kour

game_constants.cpp

#ifndef GAME_CONSTANTS
f#tdefine GAME_CONSTANTS

#include "data_containers.h"

TOUCHSCREEN_LEFT = 122;
TOUCHSCREEN_RIGHT = 929;
TOUCHSCREEN_TOP = 77;
TOUCHSCREEN_BOTTOM = 884;

MINPRESSURE 40,
MAXPRESSURE 1000;

BUTTON_DEBOUNCE_DELAY = 20;

scoreFormat[] = "%04d";

BIT MASK[] = {0x01, 0x02, 0x04, 0x08, 0x10, Ox20, 0x40,

pointsForRow[] = {7, 7, 5, 5, 3, 3 , 1, 1};

player_height = 8;
initial ball speed_x = 1;
initial_ball_speed_y -1;

LevelConstants all levels constants[LEVELS_NUMBER] =

Ox3C}},
OxFF}},
Ox55}},
OxFF}},
OXFF}},
OxAA}},
OxFF}},
OxFF}},
OxFF}},
OxFF}},
OxFF}},
OxFF}},
OxFF}},
OxFF}},
OxAA}}

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
%

-
-
-
%

-
-
-
%

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

OOOOOOOOOO\IO\:J'I-POOOOOOOOOOOO
OOOOOO\IO\W-P:JJNOOOOOOOOOOOO
UJUJUJUJUJUJUJ:)JUJUJUJUJUJUJUJ
UJUJUJUJUJ-P-P;P-PUJUJUJUJUJUJ

-
-
-
-

i i N e N e N e e e N e e N e N

Blocker Game with Arduino Uno Gurleen Kour

data_containers.h

#tifndef DATA_CONTAINERS
DATA_CONTAINERS

LEVELS NUMBER 16
SCORE_SIZE 30

#include <stdint.h>

typedef TFT _Size {
X, Yy, width, height;
} TFT_Size;

typedef game _state type {
game_mode;
X_ball;
y_ball;
x_ball old;
y ball old;
ball speed x;
ball speed y;
x_player;
X_player_old;
wallState[8];
score;
lives left;
gamefield bottom;
wall top;
wall bottom;
brick_height;
brick width;
}s

typedef LevelConstants {
ball size;
player_width;
gamefield top;
rows ;
columns;
brick _gap;
lives;
wall[LEVELS_NUMBER];
} LevelConstants;

Hendif

Blocker Game with Arduino Uno Gurleen Kour

PROBLEMS

A known problem of the Arduino IDE is that it often rebuilds the sketch instead of making a
clean build. This mainly created problems when | decided to split the sketch into multiple
files for better code readability and because it makes working with the code easier, because
| got error messages saying that | defined a method multiple times. This is due to the
Arduino IDE using cached libraries and cached core build.

I really wanted to find a solution, because in my opinion, the sketch is too cluttered and
most code in it should have been split into classes. As | couldn’t find a solution, | had to
settle and write all necessary methods in the .ino file.

POSSIBLE TEST CASE

The home screen is visible. The player presses chooses if he wants to play in touch mode or
button mode. He then starts the game by pressing any button (button mode) or touching the
screen (touch mode). The first level appears, which has rows with different number of bricks.
The player moves the paddle by either pressing the right and left buttons (button mode) or
by touching the right or left side of the screen (touch mode). The player can bounce the ball
with the paddle and try to hit bricks. If he can’t bounce the ball and it falls to the bottom of
the screen, he loses one life. When he hits a brick, he gains points. When no bricks are left,
the next level appears. If the player loses all his lives, he loses the game and a “You Lost”
screen appears. If he wins all levels, a “You Won” screen appears. In both cases, the player
can return to the home screen by pressing the home button.

SOURCES

Display Drivers — ELEGOO

Online Blocker Code - https://create.arduino.cc/projecthub/javagoza/arduino-touch-

breakout-game-edall3?ref=tag&ref id=games&offset=66

